## Status Report – RF Linac Group

John Staples, Andy Sessler,
Joe Kwan, Rod Keller, LBNL
Paul Schlossow, Tech-X
Peter Ostroumov, ANL
Wieren Chou, FNAL
Bill Herrmannsfeldt, SLAC

## RF Linac Group Activities

- Look at, but did not pursue 100 Mhz DT linac and single-bunch pulsed drift tube device.
- Instead, went for a solution capable of higher current made possible by very high field superconducting solenoids
  - Still need parallel beamlets to deliver 1 microcoulomb
  - Developed three scenarios differing in energy ramper
  - Alternate solution with a single beam and stacker ring
- Took a look at ultimate charge density for linac bunch

## Charge Density

- Looked at several approaches
  - Maschke formulas (several of them, all different scalings, reflecting different relationships between implicit variables).
  - Experience with multiparticle simulations
- All give charge densities in the range of a few times 10<sup>10</sup> /cm<sup>3</sup> for linacs in the frequency range looked at here.
  - Formulas and simulations were in pretty good agreement
- Ion source turned out to be the current limit in our case, for a useable emittance.

## **Basic Parameters**

- \_ 1 microcoulomb of Ne+1, compressed to 1 nsec
- Based on the debunched linac energy spread, compression of 200 feasible
- \_ 5 amps at 200 nsec gives required charge
- \_ 300 mA/beam gives about 16 parallel beams
- \_ 60% capture in linac requires 500 mA/beam from the ion source
- \_ 50 Mhz selected for RF, optimum not searched

## Linac Lattice

- Linac based on 50 Mhz modules with 2-3 gaps and no focusing, based on a TE mode structure (Interdigital H-mode cavity with drift tubes)
  - 1 or 16 parallel beam channels, various distribution
  - 25 cm long, 1-1.5 MV energy gain per cavity
- Between linac sections sits a 15 T SC solenoid
  - 1.5-2 cm bore radius, 5.5 cm overall radius
  - 15 cm long
  - Dimensions derived from existing designs

## Ion Source and Number of Beams

- 1 microcoulomb, 200 nsec, 60% bunching efficiency requires 500 mA in 16 beamlets
- Each of 16 sources is a 7-hole multiaperture extraction geometry with a 100 kV voltage across a 7.1 mm gap.
- \_ Sources spaced 12 cm apart
- \_ Emittance of each source 0.09 pi mm-mrad
  - 1 times rms normalized
- Rest of 2 MV injector made up in column with parallel beams

#### Configurations of 16 beams

Spacing between centers is 11-12 cm

#### Ring



2 by 8



1 by 16



### Worksheet based on experimental measurements

| Ion Extraction Worksheet |           |                  |                 |               | RK: 041028      |             | 1            |           |
|--------------------------|-----------|------------------|-----------------|---------------|-----------------|-------------|--------------|-----------|
| HEDP works               | hop, very | short extraction | n pulse (2x les | s gap assumed | )               |             |              |           |
|                          |           |                  |                 |               | B-1d- Bth -d    |             |              |           |
|                          |           |                  |                 |               | Bold: Result of | calculation | given        |           |
| Single Ap                | perture   |                  |                 |               |                 |             |              |           |
| 3                        |           | *                |                 |               | Reduced gap     |             | x/x'         |           |
| Current                  | Voltage   | Aspect Ratio     | Charge State    | Atomic Weight | d min           | R           | Eps n rms    | j         |
| [ mA ]                   | [ kV ]    |                  | NY.             | [ amu ]       | [ mm ]          | [ mm ]      | [pi mm mrad] | [mA/cm^2] |
| 74.54                    | 100       | 0.5              | 1               | 20            | 7.1             | 3.54        | 0.014        | 47.5      |
| Multi-Ape                | erture    |                  |                 |               |                 |             |              |           |
|                          | 100       |                  | 1               | 20            |                 | 14.14       | 0.087        |           |
| Channel Val              | ues       |                  |                 |               |                 |             |              |           |
| Current                  |           |                  |                 |               |                 |             |              |           |
| [ mA ]                   |           | # of holes       |                 |               |                 |             |              |           |
| 521.75                   |           | 7                |                 |               |                 |             |              |           |
| Multi-Cha                | nnel, r   | ound             |                 |               |                 |             |              |           |
|                          | 2000      |                  | 1               | 20            |                 | 452.5       | 8.26         |           |
|                          |           |                  | -               |               |                 | .02.0       | 0.20         |           |
| Global Value             | s         |                  |                 | Minimum       | 1               |             | .5           |           |
| Current                  |           | 30               | Circumfer.      | Lg. Radius    |                 |             | 38           |           |
| [ mA ]                   |           | # of channels    | [ mm ]          | [ mm ]        |                 |             |              |           |
| 8348                     |           | 16               | 452.5           | 72.01         |                 |             |              |           |



Beam Channel Pattern for RF Linac Scenario



Filament driven multicusp discharge chamber Pulsed gas supply Pre-Ionization pulse, about 5 µs Main pulse 250 ns

Ion Source, Extraction, and Injection Column
112 Beamlets, total, in 2x8 channels

## Buncher and Linac

- Kick buncher (not designed, but using same cavity design as linac) with 60% capture into linac
- Linac a lattice of 50 Mhz cavities and solenoids
  - 25 cm long cavities, 1-1.5 MV energy gain
  - 15 cm long, 15 T SC solenoid, based on commercially available devices, closed-packed in array with cold bore.
- Short linac sections, coupled with energy tilt cavity or core allows *continuous output energy variation*

### Linac lattice

Interdigital H-mode cavity

Interdigital H-mode cavity



1-1.5 MV gain

#### III(ELUIYI(a) III-IIIOUE LESUHA(UI CUIIIIYULA(IUHS





Planar Beam





## Neon<sup>+1</sup> Beam at Linac Exit

- $_{-}$  20 MeV (1 MeV/amu), beta = 0.046
  - − Phase width ~ 20 degrees
  - Energy spread  $\sim +/-0.6\%$
- \_ Transverse emittance growth a factor of 3
  - Estimated from DTL studies, may be less
  - 3 pi mm-mrad, 1 times rms, normalized
  - Lower input emittance does not significantly improve output emittance
- Beam simulated with Trace-3D to check matching and current dependence
  - No emittance growth, loss mechanism

#### TRACE 3D simulations of the Linac

| Beam                         | Ne 1+            |  |  |
|------------------------------|------------------|--|--|
| Input energy                 | 2 MeV, 0.1 MeV/u |  |  |
| Output energy                | 20 MeV, 1 MeV/u  |  |  |
| Current                      | 300 mA           |  |  |
| Frequency                    | 50 MHz           |  |  |
| Length                       | 8.6 m            |  |  |
| Number of resonators         | 17               |  |  |
| Voltage per gap              | 400-500 kV       |  |  |
| Field in the solenoids       | 15 Tesla         |  |  |
| Eff. Length of the solenoids | 15 cm            |  |  |
|                              |                  |  |  |

Trace-3D simulation with -40 degree stable phase, 300 mA current through first 14 MeV of linac. Note smooth beam envelope and phase envelope (red).



#### Same parameters: current values 0, 300 and 600 mA



# Full linac to 20 MeV, followed by focused drift, showing beam debunching.



## Beam Manipulation at Linac Exit

- Reduce energy spread and introduce correlated energy tilt for ballastic compression
- Three methods:
  - Tilt with frequency-offset cavity, immediately debunch to reduce energy spread to +/-0.2%
  - Debunch, then since bunch structure is too long, tilt with a
     1 Mhz sawtooth cavity
  - Debunch, and follow with an induction linac core
- Debunching voltage 0.12 kV, tilt voltage 1.4 MV
  - Debuncher with small harmonic component reduces energy spread by factor of ~3.

### Linac debuncher/energy tilt cavity for 4 configurations

#### Introduce tilt first, then debunch

Linac - Tilt Linac - Debuncher



#### For loading ring: debunch only

Linac - Debuncher - Stacking Ring



#### Debunch, then tilt with sawtooth

Linac - Debuncher - Tilt Cavity



#### Debunch, then tilt core

Linac - Debuncher - Tilt Core



#### Beam simulation in the debuncher



Exit of the Linac, 20 MeV Ne<sup>1+</sup>, 1 MeV/u, 300 mA

# Beam propagated 4.4 meters, Space charge has increased energy spread significantly



### Non-linear effect can be cancelled by applying second harmonic



## Tilt with Off-Frequency Cavity

- \_ Macropulse length is 200 nsec (10 bunches)
- \_ +/- 1.4 MV modulation over 200 nsec
- A cavity 1 Mhz off has a 1 microsecond beat frequency with the 50 Mhz bunch structure
- 200 nsec is 20% or 72 degrees of the 1 Mhz beat
- The middle +/-36 degrees (58% amplitude) of peak voltage of 49/51 Mhz cavity modulates the beam energy over the 200 nsec

## Transport to Target

- Beam emerges from debuncher/tilt cavity as 16 parallel beams in a ring or linear array
  - For stacking ring, only one beam is used
- Overall emittance is large, but beams can be merged, converging to a single point at target
- Final-Focus group suggested a targeting method developed in the ICF program.
  - Ed or Simon will explain

## Stacking Ring Alternative (Chou)

- Instead of 16 parallel beams compressed by a factor of 200, betatron stack one beam in ring, 500 nsec for 10 turns and extract
- Apply voltage tilt after fast extraction for ballistic compression
- Transverse emittance at least sqrt(10) larger than linac beam
- Only modest vacuum required, 10<sup>-7</sup> Torr
- \_ Tune shift about 1 unit
- \_ Few microsecond store before extraction

### Observations

#### Observation 1:

- Goal: To create an extremely intense short bunch at low duty factor
- 20 MeV, 1 μC, 1 Hz: beam power = 20 W
- Beam loss is non-issue
- This is very different from those high power (~ MW) hadron accelerators like SNS, PSR, ISIS, J-PARC, GSI, RIA, etc.

#### Observation 2:

- Limited budget
- Hardware needs to be as simple and realistic as possible

### Ring Compressor for Transverse Stacking



- Ne+ 20 MeV,  $\beta$  = 0.045, A = 20.17, B $\rho$  = 2.84 T-m
  - Warm combined function magnet: B = 1.9 T, p = 1.5 m, L(mag) = 9.4 m, C = 12 m
  - SC magnet: B = 4 T, p = 0.7 m, L(mag) = 4.5 m, C = 7.5 m
- 10-turn stacking
  - Injected linac beam width: 5000 ns, or 67.5 m.
  - Extracted beam width: 500 ns, or 6.75 m
- Transverse phase space painting during 10-turn injection (similar to CERN PSB)
- RF barrier to preserve extraction gap
- Space charge induced resonances may not have time to cause damage (similar to non-scaling FFAG)
- IBS may not have time to cause dilution
- Beam halo scraping by physical aperture is ok (or use collimator for localizing loss)
- Beam parameters similar to that of existing proton lings and rings
  - Injected 50 MHz bunch: 2.4e10 (200 mA), 1π mm-mrad
  - Beam in the ring: 6e12 (2 A)
  - Extracted beam: 2 A × 500 ns = 1 μC
- Drift compression 250-500:1

### **Questions and Answers**

- Vacuum requirement:
   10⁻⁻¹ torr (Sessler/Yu; GSI SR reaches
   10⁻¹¹ torr)
- Outgassing from lost ions:
   Collimator to control ion loss
- Energy tilt for longitudinal compression:
   Downstream induction linac to obtain
  - $\triangle E/E = \pm 14\%$
- Space charge <u>Laslett</u> tune shift:
  - HEDP/Fermilab Booster = 3.7
  - Emittance growth simulation for tune shift ratio = 3.2 ( $\Delta \epsilon/\epsilon \sim 50\%$  in 10 turns)



## Analysis and Discussion

- \_ Fairly conservative design
  - Ion source parameters from known sources
  - 400 kV gap voltage demonstrated in similar geometries
  - 15 T supercon solenoids based on available units
- Continuously variable output energy
- Linac beam parameters based on simulations with benchmarked codes.
- Solenoids offer wide momentum aperture and are relatively space charge independent.
- Relatively smaller sensitivity to offset errors
- No obvious show-stoppers

### Problem Areas

- Cavities have large gap capacitance
  - Lowers shunt impedance, may have voltage variation amongst the gaps
  - But, provides more stored energy in cavity
    - \_ About 10% of stored energy removed by beam pulse
- \_ High system complexity with many components

## Areas for Further Study

## \_ Physics

- Beam-cavity interaction and stored energy
- Beam dynamics in linac and compression region
- Ultimate charge density
- Error and parameter studies

## Engineering

- Multiple beam, low-frequency cavity, field uniformity
- High-field supercon solenoids

#### Costs

Not considered here